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We investigate the dynamical consequences of an axisymmetric velocity field with 
a poloidal magnetic field driven by a prescribed e.m.f. E. The problem is motivated 
by previous investigations of dynamically driven dynamos in the magnetostrophic 
range. A geostrophic zonal flow field is added to a previously described velocity, and 
determined by the requirement that Taylor’s constraint (Taylor 1963) (guaranteeing 
dynamical self-consistency of the fields) be satisfied. Several solutions are exhibited, 
and it is suggested that self-consistent solutions can always be found to this ‘forced’ 
problem, whereas the usual cc-effect dynamo formalism in which E is a linear function 
of the magnetic field leads to a difficult transcendentally nonlinear characteristic 
value problem that may not always possess solutions. 

1. Introduction 
It has long been known that the magnetic field of the Earth (and of some other 

planets) is maintained by a dynamo mechanism. The effects of advection by motions 
of the conducting fluid in the core tend to stretch the magnetic field lines and increase 
the magnetic energy, compensating for resistive effects which turn magnetic energy 
into heat. The purely kinematic aspects of this problem (in which the velocity field 
is supposed given, and the magnetic field arises as an instability) have been 
extensively investigated (for a comprehensive review see Moffatt 1978), but only in 
recent years has there been significant progress on the much more difficult nonlinear 
problem in which the velocities are caused by body forces, and are themselves subject 
to the Lorentz forces exerted by the magnetic field. 

Order-of-magnitude estimates of magnetic field strengths in the Earth’s core reveal 
that for the relatively long timescales (of the order of 10a-104 y) associated with the 
evolution of the main geomagnetic field, the primary force balance is between the 
Lorentz forces, Coriolis forces and pressure gradients, with inertial forces and 
viscosity playing a secondary role, except perhaps in the boundary layers. (For 
example, the Ekman number in the core is probably no larger than 10-14.) Such a 
regime has become known as ‘magnetostrophic’. One can then hope to describe the 
relevant dynamics with an equation of the form 

2 p p x  u) = -Vp+F, (1.1) 

where F represents the body forces (including the Lorentz force). D the angular 
velocity of the core, and U, p and p respectively the relative velocity, pressure and 
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density. It is clear that if (1.1) has a solution (in a sphere, say, satisfying U-n = 0 
on the surface where n is the outward normal) then U is determined only up to an 
arbitrary geostrophic flow U,(S) 4, where s is the distance from the rotation axis. Such 
a lack of uniqueness suggests, from a mathematical point of view, that (1.1) may not 
always possess solutions for arbitrary F, and indeed Taylor (1963) showed that for 
a solution to exist the zonal component of F is required to satisfy the conditions 

r 

where C(S)  is any cylinder coaxial with the rotation axis inscribed in the sphere. 
Taylor showed how to determine UG up to a solid-body rotation as the solution 

of an initial-value problem when the induction equation was taken into account and 
an initial field chosen to satisfy (1.1). Interest then focused on whether a self-excited 
field B could be found, together with a corresponding flow u~(t?), with B satisfying 
the basic compatibility condition (2.6). Most progress has been made for so-called 
‘mean-field’ models in which the effect of a small-scale or turbulent velocity field on 
a mean magnetic field B is modelled by a mean e.m.f. Eb = at, B, (the ‘a-effect’) in 
the induction equation for B. Problems of this type have been investigated by 
Childress (1969), Malkus & Proctor (1975) and Proctor (1977). Childress showed that 
trivial solutions (with UG E 0) could be found in the special case ai, = asb,, with a 
a constant (although problems arise at higher orders in amplitude, as shown by 
Proctor 1975), while the other two papers dealt with more realistic forms of the 
a-effect, and showed that the problem is in general a non-trivial one, with U,  being 
obtained as part of the eigensolution. It has proved hard to formulate a tractable 
problem, though Greenspan (1974) and Proctor (1975) made some progress in 
simplified geometries, and more recently Soward & Jones (1983) and Ierley (1985) 
have approached the problem by reinstating the viscous terms in (1.1) and finding 
UG as a singular limit as the Ekman number goes to zero. 

There is still room for doubt, however, as to whether solutions of the required form 
are possible for general forms of the a-effect. Of course, while E is certainly a linear 
functional of B it is not obvious that the local relation furnished by the a-effect 
is ever an accurate representation for realistic velocity fields. Fearn & Proctor 
(1983a, b) have undertaken extensive studies of magnetostrophic convection in a 
sphere, and used them to construct models of mean fields that do not arise as an 
instability according to the ideas of the kinematic theory, but are driven directly by 
a non-axisymmetric instability, which relies for its energy on unstable entropy 
gradients. Preliminary calculations are reported in Fearn & Proctor (1984) and a full 
account is given in Fearn & Proctor (1987) ; these papers are referred to  hereinafter 
aa FP84, FP87. In  the latter paper we describe attempts to incorporate the Taylor 
constraint into our model. Though these have not been wholly successful, they 
suggested to us that calculations of UG might be made easier were the e.m.f. E, rather 
than the quantity a ,  prescribed. (In a full solution E would depend on B through 
the non-axisymmetric convection problem.) Such a prescription in any event appears 
naturally in the formulation of FP87, where the assumptions leading to the a-effect 
ansatz cannot be justified. For any given Ethe calculations yield, besides U ,  the mean 
toroidal field B : these can be converted into an a-effect if desired by writing a = E+/B. 
Of course the resulting a may have singularities. 

The present paper reports an extensive investigation, making use of the above 
ideas, into the way in which self-consistent magnetic fields can arise. We concentrate 
on dynamos of the ‘do’ (or, in our case, ‘ E u ’ )  type, in which the poloidal field is 
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sustained by E, while the zonal field is produced from the poloidal field by the actio? 
of a differential rotation, which is prescribed, apart from its geostrophic part U,  #. 
The problem is formulated in the next section, and it is shown that it can be reduced 
to an integral equation of the first kind for G(s) = s(d/ds) ( UG/s) ,  and further that 
the form of this equation is such that smooth solutions can be expected. In $3 we 
give brief details of the method of solution (a fuller description is give in FP87). 
Results are presented in $4 and we show that solutions for G(8) can indeed be found 
for a variety of different cases. In a conclusion we discuss the significance of the 
results. 

2. Derivation and structure of the equations 
I n  the self-consistent dynamo model discussed in FP84, FP87, we distinguish 

sharply, following Braginskii (1975) between axisymmetric and non-axisymmetric 
fields. The non-axisymmetric magnetic, temperature and velocity fields are supposed 
to arise as an instability of convective type on an axisymmetric background. The 
latter is maintained (at least as far as the magnetic field is concerned) by the nonlinear 
interaction of the non-axisymmetric convection, leading to an axisymmetric e.m.f. 
of the form E = ( u  x b), where u and b represent the non-axisymmetric velocity and 
magnetic fields respectively, and the angle brackets indicate an azimuthal average 
of each component of the vector in polar coordinates. The theory also requires large 
differential rotation, which is much more effective in producing a toroidal from a 
poloidal field than E. Then the only important part of E is its azimuthal component 
(denoted here by E) which is responsible for maintaining the poloidal field. We may 
then write the axisymmetric part of the dynamo problem addressed in FP87 in the 
form 

sU;V (3- - -sBp-V (3 - + ( P - s - ' ) B , j  

where we have used cylindrical polar coordinates (s,#, 2). [For a derivation see, for 
example, Moffatt 1978.1 The magnetic field 

B($, Z) = B ~ +  B& B~ = v x (~41, 

U(s, 2) = up+ uqi 

(2.2) 

while the velocity field is similarly decomposed as 

(2.3) 

The equations have been non-dimensionalized in such a way that the diffusion 
coefficient is unity (see FP84, FP87 for details). Equations (2.1) are to be solved in 
a sphere of (dimensionless) unit radius with B matching to an external potential field. 
For a given E and U, B is then determined uniquely. However, the magnetic field 
that emerges will not in general satisfy the Taylor condition (1.2), with F replaced 
by the Lorentz force ((V x B) x B). Since the magnetostrophic equation (1.1) only 
defines U up to a geostrophic flow we are free to add such a flow to U in (2.1) to 
attempt to  achieve consistency. We therefore write, instead of (2.3)) 

U = up + ( u, + sQ,(s)) $3, 
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where Up and Uo are prescribed. Then the equations to be solved are 
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+s(Bp-3) gG+ ( 2 . 5 ~ )  ds 

1 
0 = E - -  UP.V(sA)+ 

S 
(2.5b) 

in the sphere r < 1. The geostrophic flow Q,(s) is determined (up to an additive 
constant) by the constraint (cf. (1.2)) 

T(s)  ~ ( 5 ,  Z) dz = 0, (2.6) s,,@ 
where 7(s ,  z )  = [(V x B j )  x (V x Ad)]+. The flows U, and Up are to be regarded as the 
basic (non-magnetic) parts of the mean velocity field. In  keeping with the quasi- 
kinematic nature of the study, we neglect the corrections to U, and Up given by the 
solutions of (2.5). 

According to Braginskii (1964a, b) the driving e.m.f. E (here prescribed) may be 
related directly to the local value of B in the limit of large R, by the ansatz 

E = aB, (2.7) 

where a(r, 0) depends only on the asymmetric velocity u. If (2.7) is substituted into 
(2.5) the latter becomes a problem that is homogeneous in the magnetic-field 
amplitude, and then Q,(s) may be thought of as an ‘eigenflow’ that permits 
satisfaction of (2.6) (Malkus & Proctor 1975; Proctor 1977; Ierley 1985). In  this form, 
or one closely allied, it has received attention from the above authors and also Soward 
& Jones (1983). All these papers choose the form of a and then investigate the 
circumstances in which a solution of (2.5), (2.6) can exist. Of course, the amplitude 
of a must be adjusted in this case to obtain a steady solution, and so the problem 
becomes one of eigenvalue type. Here we have preferred to work with a fixed E, for 
two reasons. First, (2.8) is not very accurate if R, is not very large and even at large 
R, it fails a t  the equator and at  points where the zonal phase velocity of the wavelike 
disturbance represented by u, b is very close to the local differential rotation velocity 
[see FP841. Secondly, the interest of this forced problem derives from its role in the 
self-consistent dynamo calculation described in FP87. Then, because it arises from 
a convection problem whose dynamics are affected by B, the dependence of E on B 
is much more complicated than the linear relation (2.7). If in our quasi-kinematic 
study we accept E as prescribed, there is a powerful computational advantage too; 
for then A is given by E and Up, and does not depend on 8,. We can then see that 
for fixed U,, ( 2 . 5 ~ )  can be written as an integral equation of the first kind for the 
quantity G(s) = sdQ,/ds, in the following manner. We may write ( 2 . 5 ~ )  in the form 

where B = Bp.f. Since the equation LOB = 0 has the unique solution B = 0, (2.9) 
ps has a unique solution that is given (formally) in terms of the Green’s function 

K(x,  x’) of Lo by 

K(x,  x’) G(s’) I?,,@’) d2x’, 
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where d2x’ G s’ds’dz’. The first term on the right-hand side is given independently 
of G(s) ,  so we can write it as Bo(x), say. We now apply (2.6), but in the reduced form 
[which can be obtained from (2.6) by manipulation] 

p(s) = Jc(s) BB,,dz = 0 (2.10) 

(see Childress 1969) to yield the result 

or, equivalently, H(s ,  s’) G(s’) ds’, (2.12) 

We can see from the last expression that the problem has been reduced to an integral 
equation of the first kind. It is easy to show that (2.12) has no non-trivial solutions 
if F(s)  = 0. For if Uo(x) = 0, we have from (2.5) 

O=B,,G(S)-SU;V (2.14) 

Multiplying through by B/s2, integrating over s from 0 to 1, and using (2.10), we have 

(2.15) 

The first term in the laat expression vanishes since V. Up = 0, while the second can 
be shown to be negative definite by routine manipulations (see e.g. Moffatt 1978). 
Thus we have a contradiction; this implies that when Uo(x) =I 0 (2.12) has a unique 
solution, and the only question is whether the solution G(s) is sufficiently well behaved 
to count as a realistic flow. The answer to this question depends on the smoothness 
of the function F(s )  and of the kernel H(s,  s’), but though we have been able to find 
no rigorous proof that G is smooth it seems clear from the form of F(s) ,  which is 
essentially that of kernel similar to H acting on Uo(x), that a smooth solution is 
possible, and indeed none of our computations shows any evidence of discontinuities 
in G(s). 

It is important to note, however, that the smooth solution that is found is 
G(s) = sdQ,/ds, and there is no reason why G(s) should vanish at s = 0. Thus 
typically R, will have a logarithmic singularity there. Such a solution should not 
alarm us, however, since there is no viscosity in the problem and so infinite shears 
are certainly permitted. The singularity is not very severe ( U ,  remains finite) and 
in the presence of viscosity would be accommodated by a passive boundary layer near 
the axis of symmetry. A similar singularity was found for the simplified dynamo 
model in a cylindrical geometry discussed by Proctor (1975) for which G(s) = const. 
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3. Numerical solution 

We write 
Instead of solving (2.12), (2.13) directly, we choose to work with (2.5) and (2.6). 

NT 

n-1 
G(s) = G,T,(z), x = 2s-1, (3.1) 

where the T,(z) are Chebyshev polynomials, so that - 1 < x < 1 .  This representation 
is used in two different ways, explained fully in $4.2; either G(s) is represented by the 
sum (3.1) for 0 < s < 1, or the representation is used only for 0 < s Q so < 1, with 
G(s) having a linear form for so < s < 1 with G and G continuous at so. In either case, 
G is given in terms of NT undetermined coefficients. Adequate resolution was 
achieved with NT = 7 in most cases, though higher values were used to check 
convergence. With given values of E and Up, (2.5b) was then solved for A on a 
spherical polar mesh, with A being matched to the potential of an exterior irrotational 
field outside the 'core', in the usual way. The method used for this solution is 
described fully in FP84, but is entirely straightforward. Then ( 2 . 5 ~ )  was solved, with 
a given U,, for B, with the boundary condition B = 0 at r = 1. B therefore depends 
on the coefficients G ,  in a complicated way. We next evaluate 

where T(s,)  are the integrals (2.6) evaluated at  s = 5, = n / N s +  1 (note that 
T(0) = T(l)  = 0 always), while T,,, = Max,, I7(s, z )  I. The integer N ,  is chosen 
greater than NT to eliminate problems of over-determination, and we typically used 
N ,  = 20 for NT = 7 ;  the results are very little affected by other choices; greater 
accuracy is achieved for larger NT as might be expected. Clearly Ts must be made 
as small as possible to allow (2.6) to be satisfied as nearly as possible. 

In  order to evaluate the integrals in (3.2), we must interpolate A and B onto a 
cylindrical mesh. This is achieved by first finding a least-squares fit to 

and 

where the j, are spherical Bessel functions and the a,, are the first N,. solutions of 
the equation 

j w n ( X )  = 0. (3.4) 

The choice of coefficients in (3.3) clearly shows that the poloidal field is of dipole type, 
and it may easily be shown that such representations automatically satisfy the 
boundary conditions on A and B at r = 1 .  It was usually found to be sufficient to 
choose N ,  and N,. both equal to 6 when the number of mesh points used to represent 
A and B in the upper hemisphere was 64. The series (3.3) have the advantage that 
they can be differentiated explicitly and evaluated at any point, so that the 
integrands for (3.2) can be found. Thus Ts can be evaluated for any values of the 
coefficients G ,  and then, using a standard package, minimized with respect to 
variations in the G,. As expected, the initial guess for UG made no difference to the 
h a 1  solution. This procedure determines the G ,  uniquely, and U ,  can then be found 
by integrating (3.1) with respect to s and setting uG(1)  = 0 for definiteness. The 
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FIQURE 1. the e.m.f. from non-axisymmetric convection (see Fearn & Proctor 1984), a chosen e.m.f. 
E = 16ra(l--rs) sinze cossB and the toroidal flow U, = -(2545/16) V ( ~ - P ) ~  sine used in our 
calculations are illustrated in (a)-(c) respectively by contour plots of their strengths in the 
quadrant 0 < r < 1 , O  < B < &c. Broken contourJines correspond to negative values of the function. 
Streamlines of the poloidal flow Up = V x V x 81. with S = 2.5 It&?'( 1 -r)% (3 cos 28 + 1) are shown 
in (d). The flow direction indicated is that corresponding to positive values of l2&. 

procedure seems to work well apart from some difficulties near s = 1 due to the fact 
that T(s) + O  [since the height of the cylinder C(s) tends to zero], as s-t 1 whatever 
the zonal flow. These problems are resolved and discussed in the next section and 
we show that our method yields converged solutions that satisfy (2.6) to acceptable 
accuracy. 

4. Results and discussion 
4.1 Some typical solutions 

All the solutions reported in this paper are based on the prescribed flow fields shown 
in figure 1. Both the zonal velocity and poloidal flow field (whose dimensionless 
amplitude is arbitrary and measured by the parameter R&) are given simple forms 
so as to maximize the resolution of the fields obtained with a given number of mesh 
points. Other velocity fields have been investigated, but solutions seem to be available 
in every case. The fields of figure 1 are the same as those used in FP84 and FP87. 
We also use one or other of the two e.m.f. profiles shown in figure 1. Profile (a) is 
taken directly from a converged calculation for the full convective problem (but 
without satisfying Taylor's constraint) described in FP87. Note that it is confined 
to a small region inside the sphere, as a result of the field concentration at larger R, 
described by Fearn & Proctor (1983a, 13). To provide contrast, and also for better 
resolution, profile (b) fills the sphere. The amplitudes of the e.m.f. and zonal flow 
profiles are arbitrary, since varying them serves only to change the absolute and 
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FIGURE 2. In (a) is shown the dipole field which is generated by the e.m.f. E4 illustrated in figure 
1 (a) and the toroidal flow Uo illustrated in figure 1 (c). There is no poloidal flow. Poloidal field lines 
and contours of the toroidal field strength are shown. The finite-difference calculations used step 
lengths of h, = 1 / N  in r and h, = a/2L in 8, with N = L = 8. The field is then fitted to the series (3.3) 
with N ,  = No = 6. The fitted field is plotted in (b) using a 20 x 20 (s, z )  grid together with the 
corresponding azimuthal component of the Lorentz force ~ ( 8 ,  z )  and it's integral over z, T(e), see 
(2.6). The contour interval for ~ ( 8 ,  z) in both (b) and (c). Clearly in (b), the Taylor constraint T(s) = 0 
is not satisfied: T, = 2. In (c) we show how the solution shown in (b) is modified when the geostrophic 
flow is chosen to satisfy the Taylor constraint. The toroidal flow appears only in the equation 
determining the toroidal field, so the poloidal field is unchanged. The toroidal field is now 
concentrated in the region where the poloidal field is approximately aligned with the rotation axis. 
Regions of positive T cancel regions of negative T to give a Ts which is three orders of magnitude 
smaller than that in (b); T, = 7 x Also shown is the geostrophic flow (both G = sL& and UG 
are illustrated) together with the total toroidal flow U = Uo + UG. The latter may be compared with 
U, which is illustrated in figure 1 (c). The geostrophic flow is represented by the sum (3.1) with seven 
terms in the Chebyshev series for 0 < s < so. For so < s < 1 ,  we take (2' to be a constant; its value 
at s = so. Here so = 0.8. The arbitrary uniform rotation is chosen to make U ,  = 0 a t  s = 1. The 
value of so is chosen to eliminate the 'tail' which may appear near s = 1, see figure 4. 
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G 
I 0.2 

0.1 

0 

T 

1 
FIGURE 3. As figure 2(b ,  c )  but for the e.m.f. in figure l ( b ) ,  N = L = 15, N,. = N ,  = 8, and a,, = 1.  

In (a), T = 0.3; in (b)  T, = The contour interval for 7 is 2 x for both (a)  and (b ) .  

relative magnitudes of A and B (and in the latter case, the magnitude of 52,) without 
changing their functional forms. 

In  figure 2(a )  we show the 'raw' field that emerges as the solution of (2.5) with 
the e.m.f. profile (a) and zero poloidal flow. This can be compared with the 'fitted' 
field as defined in (3.3) and shown in figure 2(b)  which can be seen to provide a good 
representation. Also shown are a contour plot of 7(8, z )  and a graph showing T(s,), 
n = 1 .  . . N,. Clearly for most a,, T(s,) is of the order of the size of the integrand so 
that Taylor's condition is not even approximately satisfied. In contrast figure 2 ( c )  
shows the effect of choosing 52, to minimize T,. It can be seen that the values of T(s,) 
are now of the order of times the maximum value of the integrand, so that 
T, = Also shown are G(s) and UG(s) = 852,(8) = -8s: (l/d) Q(d) ds'; and 
contours of the total toroidal velocity U = U,+ U,. Replacing the e.m.f. profile ( a )  
with (b) gives the solutions illustrated in figures 3 (a, b). Comparing the two cases we 
see that the size of U, is comparable with that of U in both cases, but the manner 
in which T, is made small seems very different. For profile (a) the effect of 52, is to 
make B significant only near the centre of the sphere, where B,, is rather small. [It 
can be seen that this is advantageous from the alternative representation (2.11) of 
(2.6).] In  contrast, for profile (b) the change in the toroidal field is relatively very small 
and yet the change in the T(s,) is very significant. Here, it seems the minimization 
can be achieved by matching regions of positive B,, with ones of negative Bps that 
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FIGURE 4. In (a) is shown a repeat of the calculation of figure 2(c), but with so = 1. The solution 
for B, and hence for T ,  is virtually indistinguishable from that shown in figure 2 (c), but the solution 
for UG looks quite different. This apparent difference is due to the large change in U,  near s = 1, 
and the consequent rescaling of the graphs. In (b) we redraw the toroidal flows shown in (a) on 
the same scales as the corresponding flows infigure 2(c). The arbitrary uniform rotation is chosen 
so that U, has the same maximum value in both cases. It can now be seen that the geostrophic 
flow here is identical with the geostrophic flow in figure 2(c)  for 0 < s < 0.8. The geostrophic flow 
is quite different for the two cases for 0.8 < s < 1. Since the solution for B is unaltered, this 
demonstrates that U ,  in the region close to 8 = 1 is poorly determined by our minimization 
procedure of satisfying the Taylor constraint. 

have similar values of B. [Note that even with no gepstrophic flow there is 
considerable cancellation between regions of positive and negative ~ ( 8 ,  z )  for profile 
(b).] The structure of the induced geostrophic flow is unremarkable in both cases, 
though each shows the logarithmic singularity in the shear at s = 0 predicted in $2. 

4.2. The ‘tail’ of a, at 8 = 1 
It has already been noted that T(s) vanishes identically at s = 0 and s = 1. In the 
former case the reason is simply tat both A and B vanish on the axis of symmetry. 
In  the latter it is because the height of the cylinder C(s) tends to zero there. One might 
thus expect that details of the magnetic field near s = 1 would have little effect on 
T,, implying that 51, is poorly determined there (at least inasmuch as 51, is 
determined locally). This effect was observed in the earlier runs we made, using the 
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G 

FIGURE 5. As figure 3, but with a poloidal flow Up [as illustrated in figure Id]; RL = 20, and 
a,, = 0.75. (a) Ts = 1 ; (b)  TS = 4 x lo-’. 

representation (3.1) in 0 < s < 1, where the minimizing form of G(s) possessed an 
anomalous tail near s = 1 ,  We attempted to conteract this by introducing a different 
weighting of the T(s,)  in T, so as to give more prominence to larger values of s, but 
this only resulted in a ‘solution’ which satisfied the constraints less well at smaller 
values. This is to be expected on physical grounds, since clearly the region of small 
s is the most important in determining the B-field. We therefore decided to use (3.1) 
only for 0 < s < so (where so = 0.8 in the present case) and tomchieve a smooth profile 
for so < s < 1 by fitting 8 function of the form G(8) = a + Bs in this region so that 
G(so),  G ( s o )  are continuous. The effectiveness of this procedure can be judged for 
particular cases by comparing figure 2(c)  (so = 0.8) with figure 4 (so = 1). It can be 
seen that the toroidal field and G(s) agree closely for s < so, as one might expect, 
justifying the second procedure, which is thus used throughout the paper. The choice 
of so is determined by the size of the tail, but its precise value is not crucial. 

4.3. The role of the poloidal $ow 
Figures 5 and 6 show, for the e.m.f. profile (b), two solutions for the poloidal flow 
in figure 1 (d), with RP, = 20 and -20, respectively. These should be compared with 
the corresponding solution for profile (b) in figure 3, where RP, = 0. The poloidal 
velocity field is normalized so that the maximum (dimensionless) speed is RL. We 
would not expect RP, to be very large if our ideas on the scaling of the poloidal relative 
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FIGURE 6. As figure 5,  but with R& = -20, and 8, = 1. (a) Ts = 1; (b)  T, = 3 x 
S 

to the toroidal field (as given in $2) are correct. On the other hand, if IR&l is too small 
no significant effect on a, is observed. 

In the case R& = + 20, the effect of Up is to increase Bp near the axis and decrease 
it near s = 1. One might then expect the toroidal field to arrange itself to be larger 
for points away from the axis, but B is itself subject to the same advection effect 
as A.  The net result is a strong, but essentially one-signed field close to the axis. 
is about 4 times as large for R& = 20 as for RL = 0 with the same truncations, 
pointing to a more complicated structure for U,, though this is chiefly manifested 
in the graph of G(s). The case R& = -20 is completely different, with both Bp and 
B being advected into the region near the pole. A significant region of reversed field 
appears at the equator and U ,  looks completely different. The plot of 7(5,  z )  in this 
case suggests there may be some resolution difficulty near the poles, but we do not 
anticipate that a more accurate calculation will change the solutions for U,  
noticeably. 

5. Conclusion 
We have shown in previous sections that, for a given mean e.m.f. and poloidal mean 

velocity (which is to say for a given axisymmetric poloidal magnetic field) and a given 
non-geostrophic zonal flow field, an additional geostrophic flow may be determined 
uniquely such that the resulting toroidal magnetic field satisfies Taylor’s constraint 
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(2.6). By fixing the e.m.f., rather than writing E = aB and fixing a, we have 
transformed the problem from a transcendentally nonlinear one (essentially an 
eigenvalue problem for the magnitude of a, subject to an infinite number of 
constraints that determine U,  - see the discussion in Malkus & Proctor 1975) to one 
that is linear and thus much more tractable. While it is known that the problem posed 
in terms of a may not always have solutions, here we have found no cases where 
solutions are impossible, or non-smooth. The manner in which Taylor’s condition is 
satisfied (in general by producing a B that is relatively large where Bps is small) raises 
some intriguing parallels with the work of Braginskii (1975, 1978), whose ‘model Z ’  
description of the geodynamo relies on B,, being small throughout the region where 
B is significant. The motivation for our model is of course quite different since (in 
contrast to Braginskii) we see only a passive, rather than a dominating role for the 
Ekman layer that will arise at T = 1 to accommodate the no-slip condition there. 

In  FP87 we describe our attempts to incorporate the scheme described in the 
present paper into a self-consistent dynamo iteration. Though no converged solutions 
have yet emerged, the stage of the iteration presented here was always accomplished 
successfully. The next stage is to take into account the mean Lorentz forces due to 
fluctuating fields. This remains a much more demanding task, and while Soward 
(1986) has made some progress recently in a plane layer model, there are to date no 
self-consistent solutions in a spherical geometry, nor have any mean magnetic fields 
been investigated that arise (as in FP87) from the dynamo process itself. Such an 
extension remains a challenging topic for future work. 

This research was supported by the Science and Engineering Research Council of 
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